485 research outputs found

    Hidden Variables in Bipartite Networks

    Full text link
    We introduce and study random bipartite networks with hidden variables. Nodes in these networks are characterized by hidden variables which control the appearance of links between node pairs. We derive analytic expressions for the degree distribution, degree correlations, the distribution of the number of common neighbors, and the bipartite clustering coefficient in these networks. We also establish the relationship between degrees of nodes in original bipartite networks and in their unipartite projections. We further demonstrate how hidden variable formalism can be applied to analyze topological properties of networks in certain bipartite network models, and verify our analytical results in numerical simulations

    First Evidence for Wollemi Pine-type Pollen (Dilwynites: Araucariaceae) in South America

    Get PDF
    We report the first fossil pollen from South America of the lineage that includes the recently discovered, extremely rare Australian Wollemi Pine, Wollemia nobilis (Araucariaceae). The grains are from the late Paleocene to early middle Eocene Ligorio Márquez Formation of Santa Cruz, Patagonia, Argentina, and are assigned to Dilwynites, the fossil pollen type that closely resembles the pollen of modern Wollemia and some species of its Australasian sister genus, Agathis. Dilwynites was formerly known only from Australia, New Zealand, and East Antarctica. The Patagonian Dilwynites occurs with several taxa of Podocarpaceae and a diverse range of cryptogams and angiosperms, but not Nothofagus. The fossils greatly extend the known geographic range of Dilwynites and provide important new evidence for the Antarctic region as an early Paleogene portal for biotic interchange between Australasia and South America.Facultad de Ciencias Naturales y Muse

    Predicting the size and probability of epidemics in a population with heterogeneous infectiousness and susceptibility

    Full text link
    We analytically address disease outbreaks in large, random networks with heterogeneous infectivity and susceptibility. The transmissibility TuvT_{uv} (the probability that infection of uu causes infection of vv) depends on the infectivity of uu and the susceptibility of vv. Initially a single node is infected, following which a large-scale epidemic may or may not occur. We use a generating function approach to study how heterogeneity affects the probability that an epidemic occurs and, if one occurs, its attack rate (the fraction infected). For fixed average transmissibility, we find upper and lower bounds on these. An epidemic is most likely if infectivity is homogeneous and least likely if the variance of infectivity is maximized. Similarly, the attack rate is largest if susceptibility is homogeneous and smallest if the variance is maximized. We further show that heterogeneity in infectious period is important, contrary to assumptions of previous studies. We confirm our theoretical predictions by simulation. Our results have implications for control strategy design and identification of populations at higher risk from an epidemic.Comment: 5 pages, 3 figures. Submitted to Physical Review Letter

    The 1958 Pekeris-Accad-WEIZAC Ground-Breaking Collaboration that Computed Ground States of Two-Electron Atoms (and its 2010 Redux)

    Get PDF
    In order to appreciate how well off we mathematicians and scientists are today, with extremely fast hardware and lots and lots of memory, as well as with powerful software, both for numeric and symbolic computation, it may be a good idea to go back to the early days of electronic computers and compare how things went then. We have chosen, as a case study, a problem that was considered a huge challenge at the time. Namely, we looked at C.L. Pekeris's seminal 1958 work on the ground state energies of two-electron atoms. We went through all the computations ab initio with today's software and hardware, with a special emphasis on the symbolic computations which in 1958 had to be made by hand, and which nowadays can be automated and generalized.Comment: 8 pages, 2 photos, final version as it appeared in the journa

    Optimization in task--completion networks

    Full text link
    We discuss the collective behavior of a network of individuals that receive, process and forward to each other tasks. Given costs they store those tasks in buffers, choosing optimally the frequency at which to check and process the buffer. The individual optimizing strategy of each node determines the aggregate behavior of the network. We find that, under general assumptions, the whole system exhibits coexistence of equilibria and hysteresis.Comment: 18 pages, 3 figures, submitted to JSTA

    Eigenvalue density of Wilson loops in 2D SU(N) YM

    Full text link
    In 1981 Durhuus and Olesen (DO) showed that at infinite N the eigenvalue density of a Wilson loop matrix W associated with a simple loop in two-dimensional Euclidean SU(N) Yang-Mills theory undergoes a phase transition at a critical size. The averages of det(z-W), 1/det(z-W), and det(1+uW)/(1-vW) at finite N lead to three different smoothed out expressions, all tending to the DO singular result at infinite N. These smooth extensions are obtained and compared to each other.Comment: 35 pages, 8 figure

    Combinatorics and Boson normal ordering: A gentle introduction

    Full text link
    We discuss a general combinatorial framework for operator ordering problems by applying it to the normal ordering of the powers and exponential of the boson number operator. The solution of the problem is given in terms of Bell and Stirling numbers enumerating partitions of a set. This framework reveals several inherent relations between ordering problems and combinatorial objects, and displays the analytical background to Wick's theorem. The methodology can be straightforwardly generalized from the simple example given herein to a wide class of operators.Comment: 8 pages, 1 figur

    Heterogeneous Bond Percolation on Multitype Networks with an Application to Epidemic Dynamics

    Get PDF
    Considerable attention has been paid, in recent years, to the use of networks in modeling complex real-world systems. Among the many dynamical processes involving networks, propagation processes -- in which final state can be obtained by studying the underlying network percolation properties -- have raised formidable interest. In this paper, we present a bond percolation model of multitype networks with an arbitrary joint degree distribution that allows heterogeneity in the edge occupation probability. As previously demonstrated, the multitype approach allows many non-trivial mixing patterns such as assortativity and clustering between nodes. We derive a number of useful statistical properties of multitype networks as well as a general phase transition criterion. We also demonstrate that a number of previous models based on probability generating functions are special cases of the proposed formalism. We further show that the multitype approach, by naturally allowing heterogeneity in the bond occupation probability, overcomes some of the correlation issues encountered by previous models. We illustrate this point in the context of contact network epidemiology.Comment: 10 pages, 5 figures. Minor modifications were made in figures 3, 4 and 5 and in the text. Explanations and references were adde

    Dobiński relations and ordering of boson operators

    Get PDF
    We introduce a generalization of the Dobiński relation, through which we define a family of Bell-type numbers and polynomials. Such generalized Dobiński relations are coherent state matrix elements of expressions involving boson ladder operators. This may be used in order to obtain normally ordered forms of polynomials in creation and annihilation operators, both if the latter satisfy canonical and deformed commutation relations

    Counting, generating and sampling tree alignments

    Get PDF
    Pairwise ordered tree alignment are combinatorial objects that appear in RNA secondary structure comparison. However, the usual representation of tree alignments as supertrees is ambiguous, i.e. two distinct supertrees may induce identical sets of matches between identical pairs of trees. This ambiguity is uninformative, and detrimental to any probabilistic analysis.In this work, we consider tree alignments up to equivalence. Our first result is a precise asymptotic enumeration of tree alignments, obtained from a context-free grammar by mean of basic analytic combinatorics. Our second result focuses on alignments between two given ordered trees SS and TT. By refining our grammar to align specific trees, we obtain a decomposition scheme for the space of alignments, and use it to design an efficient dynamic programming algorithm for sampling alignments under the Gibbs-Boltzmann probability distribution. This generalizes existing tree alignment algorithms, and opens the door for a probabilistic analysis of the space of suboptimal RNA secondary structures alignments.Comment: ALCOB - 3rd International Conference on Algorithms for Computational Biology - 2016, Jun 2016, Trujillo, Spain. 201
    • …
    corecore